SELF- SUPPORTING RIDGELIGHT
The reference title and language for this EAD is English. The applicable rules of copyright refer to the document elaborated in and published by EOTA.

This European Assessment Document (EAD) has been developed taking into account up-to-date technical and scientific knowledge at the time of issue and is published in accordance with the relevant provisions of Regulation (EU) 305/2011 as a basis for the preparation and issuing of European Technical Assessments (ETA).
Contents

1 Scope of the EAD .. 4
 1.1 Description of the construction product .. 4
 1.2 Information on the intended use(s) of the construction product 4
 1.2.1 Intended use(s) .. 4
 1.2.2 Working life/Durability .. 4
 1.3 Specific terms used in this EAD .. 5

2 Essential characteristics and relevant assessment methods and criteria 5
 2.1 Essential characteristics of the product .. 5
 2.2 Methods and criteria for assessing the performance of the product in relation to essential characteristics of the product 6
 2.2.1 Load bearing capacity of the kit ... 6
 2.2.2 Resistance to wind load .. 7
 2.2.3 Resistance to snow and permanent load ... 7
 2.2.4 Reaction to fire .. 7
 2.2.5 External fire performance .. 7
 2.2.6 Water tightness .. 8
 2.2.7 Impact resistance ... 8
 2.2.8 Load bearing capacity of safety devices ... 8
 2.2.9 Acoustic performance .. 8
 2.2.10 Thermal transmittance ... 8
 2.2.11 Radiation properties .. 8
 2.2.12 Air permeability .. 8
 2.2.13 Durability ... 8

3 ASSESSMENT AND VERIFICATION OF CONSTANCY OF PERFORMANCE 9
 3.1 System(s) of assessment and verification of constancy of performance to be applied 9
 3.2 Tasks of the manufacturer ... 9
 3.3 Tasks of the notified body ... 9

4 Reference documents ... 11

Annex A DESCRIPTION of the construction product .. 12

Annex B TEST OF HARDWARE AND ITS FIXATION TO THE PROFILES 13
1 SCOPE OF THE EAD

1.1 Description of the construction product

Kit, consisting of two roof windows (openable and/or fixed), each individually CE marked in accordance to EN 14351-1:2006+A1:2010, which are connected at the top by means of hardware. The kit consists of two roof windows with same frame width and height, where openable and fixed roof windows can be combined. The kits can be combined.

The kit does not contribute to the stiffness of the roof (racking).

The pitch of the roof windows can vary from 25-40 degrees, meaning that the angle between the roof windows can be from 100-130 degrees.

The profiles of the frame and casement are pultruded profiles consisting of 70% - 80% glass fiber and 30% - 20% polyurethane resin (by mass). Density: 1800 - 2200 kg/m3. The frame profiles of the fixed roof windows are identical. The frame profiles of the openable roof windows are identical as are the casement profiles. The openable roof windows are power operated. The maximum opening is 321- 700 mm depending on the size. The surface of the profiles are treated with UV protecting coat.

Hardware (brackets and bearings) are made of steel.

The glazing is a double or triple insulating glass unit.

An example of the kit is shown in Annex A.

The product is not fully covered by a harmonised European standard (hEN). The products covered by this EAD are assessed for structural applications (self-supporting) which is not covered by the harmonized standard EN 14351-1. Furthermore, the profiles of the frame consist of glass fibre reinforced resin, for which no harmonized assessment method exist in relation to structural applications.

Concerning product packaging, transport, storage, maintenance, replacement and repair it is the responsibility of the manufacturer to undertake the appropriate measures and to advise his clients on the transport, storage, maintenance, replacement and repair of the product as he considers necessary.

It is assumed that the product will be installed according to the manufacturer’s instructions or (in absence of such instructions) according to the usual practice of the building professionals.

Relevant manufacturer’s stipulations having influence on the performance of the product covered by this European Assessment Document shall be considered for the determination of the performance and detailed in the ETA.

1.2 Information on the intended use(s) of the construction product

1.2.1 Intended use(s)

The self-supporting ridgelight is intended to provide ventilation and/or weather protection and daylight luminance to any enclosed or partially enclosed building or space.

1.2.2 Working life/Durability

The assessment methods included or referred to in this EAD have been written based on the manufacturer’s request to take into account a working life of the ridgelight for the intended use of 25 years when installed in the works. These provisions are based upon the current state of the art and the available knowledge and experience.
When assessing the product the intended use as foreseen by the manufacturer shall be taken into account. The real working life may be, in normal use conditions, considerably longer without major degradation affecting the basic requirements for works\(^1\).

The indications given as to the working life of the construction product cannot be interpreted as a guarantee neither given by the product manufacturer or his representative nor by EOTA when drafting this EAD nor by the Technical Assessment Body issuing an ETA based on this EAD, but are regarded only as a means for expressing the expected economically reasonable working life of the product.

1.3 Specific terms used in this EAD

See EN 12519:2004

2 ESSENTIAL CHARACTERISTICS AND RELEVANT ASSESSMENT METHODS AND CRITERIA

2.1 Essential characteristics of the product

Table 1 shows how the performance of the self-supporting ridgelight is established in relation to the essential characteristics.

<table>
<thead>
<tr>
<th>No</th>
<th>Essential characteristic</th>
<th>Method of verification and assessment</th>
<th>Type of expression of product performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Load bearing capacity of the kit</td>
<td>See 2.2.1</td>
<td>Level</td>
</tr>
<tr>
<td></td>
<td>Load bearing capacity of the glazing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Resistance to wind load</td>
<td>See 2.2.2</td>
<td>Class and description</td>
</tr>
<tr>
<td></td>
<td>- Resistance to snow and permanent load</td>
<td>See 2.2.3</td>
<td>Description</td>
</tr>
<tr>
<td>2</td>
<td>Reaction to fire</td>
<td>See 2.2.4</td>
<td>Class</td>
</tr>
<tr>
<td>3</td>
<td>External fire performance</td>
<td>See 2.2.5</td>
<td>Class</td>
</tr>
</tbody>
</table>

1 The real working life of a product incorporated in a specific works depends on the environmental conditions to which that works is subject, as well as on the particular conditions of the design, execution, use and maintenance of that works. Therefore, it cannot be excluded that in certain cases the real working life of the product may also be shorter than the working life indicated above.

©EOTA 2016
2.2 Methods and criteria for assessing the performance of the product in relation to essential characteristics of the product

2.2.1 Load bearing capacity of the kit

The load bearing capacity of the kit (ultimate limit states and serviceability limit states/maximum relative deflection) shall be determined by means of calculations and tests.

The characteristic values will be based on short-term load tests at room temperature without influence of climatic or environmental factors.

NOTE: The determination of the design values are not covered by this EAD. They shall be calculated on a case by case by means of:
- Characteristics performance of profiles and connections
- EN 1990 (Eurocode 0)
- Common European magnification and reduction factors
- Nationally determined parameters

By default the principles laid down in ETAG 010, sub clauses 5.1.1.1 (General, Figure 1 and the principle for “Flat sheets in construction”), 6.3.1.1 and 6.3.1.2 must be applied.

Small-scale initial test in accordance with:
- a) Density- EN ISO 1183-1 (Method A (immersion))
- b) Glass % - EN ISO 1172 (Method B)
- c) Thermal expansion coefficients (axial and transverse) - ISO 11359-2

Small-scale (characterization) tests on frame profiles shall be carried out as follows:
- d) Tensile strength (parallel to the glass fiber) - EN ISO 527-5

©EOTA 2016
e) Compression strength (parallel to the glass fiber) - EN ISO 14126 (Sample specimen type: type B1, Loading fixture method: type 2 (end loading))

f) Bending strength (parallel to the glass fiber) - EN ISO 14125 (Method A)

g) E-modulus / flexural modulus (parallel to the glass fiber) - EN ISO 14125 (Method A)

h) G-modulus - EN ISO 14129

i) Shear strength - EN ISO 14130

For a) and b) the number of specimens in accordance with EN ISO 1172.

For c) the number of samples is 3 in each direction in accordance with ISO 11359-2.

For d) to i) five tests at room temperature for every characteristic

For all tests a) to i) the test specimens are cut from the frame profile of the openable window

The characteristic properties shall be expressed in MPa and be determined by means of EN 1990, Table D1 (Vx unknown). The test results shall be given in the ETA.

The ability of the hardware as well its fixation to the profiles to withstand the reactions at the supports (top and bottom) shall be determined by means of tests, as shown in Annex B. The test specimen shall be tested at room temperature and be installed in accordance with the manufacturer’s instructions. Minimum five tests at room temperature shall be carried out. The characteristic strength shall be expressed in kN and be determined by means of EN 1990, Table D1 (Vx unknown). The test results shall be given in the ETA.

At least five full-scale tests in worst-case configuration (25° roof pitch, largest openable windows, snow-and self-weight) in room temperature shall be carried out. The load bearing capacity in kN/m² shall be determined by means of EN 1990, Table D1 (Vx unknown) and given in the ETA.

The calculated characteristic load bearing capacity, without nationally determined magnification and reduction parameters (e.g.: duration, aging/environment, temperature) of typical applications will be given in the ETA. The calculation process will be demonstrated by means of an example.

2.2.2 Resistance to wind load

The roof window shall be tested and the results shall be expressed in accordance with EN 14351-1:2006+A1:2010, 4.2.

Description of the composition of the glazing shall be provided, see EN 14351-1:2006+A1:2010, 4.2.

2.2.3 Resistance to snow and permanent load

Description of the composition of the glazing shall be provided, see EN 14351-1:2006+A1:2010, 4.3.

2.2.4 Reaction to fire

The roof windows shall be tested, using the test method(s) relevant for the corresponding reaction to fire class, in order to be classified according to EN 13501-1. Further information is provided in EN 14351-1:2006+A1:2010, 4.4.1.

The brackets and bearings used as hardware and made of steel are considered to fulfill the requirements of EC decision 96/603/EC (as amended) and therefore classified as A1 without the need for testing

2.2.5 External fire performance

The roof windows shall be tested using the test method relevant for the corresponding external fire performance roof class, in order to be classified according to EN 13501-5. EN TS 1187 T1 and T4 shall be used as basis for classification in accordance with EN 13501-5.
2.2.6 Water tightness
The roof windows shall be tested in accordance with EN 14351-1:2006+A1:2010, 4.5.
The test result shall be expressed in accordance with EN 14351-1:2006+A1:2010, 4.5 (non-shielded).

2.2.7 Impact resistance
The roof windows shall be tested in accordance with EN 14351-1:2006+A1:2010, 4.7.
The test result shall be expressed in accordance with EN 14351-1:2006+A1:2010, 4.7.

2.2.8 Load bearing capacity of safety devices
The load bearing capacity of safety devices of the roof windows shall be tested in accordance with EN 14351-1:2006+A1:2010, 4.8.
The result shall be expressed in accordance with EN 14351-1:2006+A1:2010, 4.8.

2.2.9 Acoustic performance
The acoustic performance of the roof windows shall be determined in accordance with EN 14351-1:2006+A1:2010, 4.11.
The result shall be expressed in accordance with EN 14351-1:2006+A1:2010, 4.11.

2.2.10 Thermal transmittance
The thermal transmittance of the roof windows shall be determined in accordance with EN 14351-1:2006+A1:2010, 4.12.
The result shall be expressed in accordance with EN 14351-1:2006+A1:2010, 4.12.

2.2.11 Radiation properties
The radiation properties of the roof windows shall be determined in accordance with EN 14351-1:2006+A1:2010, 4.13.

2.2.12 Air permeability

2.2.13 Durability
The durability of the roof windows shall be ensured as described in EN 14351-1:2006+A1:2010, 4.15.
The durability of the load bearing capacity of the kit is covered by the design values, see 2.2.1.
3 ASSESSMENT AND VERIFICATION OF CONSTANCY OF PERFORMANCE

3.1 System(s) of assessment and verification of constancy of performance to be applied

For the products covered by this EAD the applicable European legal act are: Decision 98/600/EC and Decision 98/436/EC

The system is: 3

In addition, with regard to reaction to fire for products covered by this EAD the applicable European legal act is: Decision 98/600/EC and Decision 98/436/EC

The system is: 3

System 1 as indicated in the above decision for reaction to fire does not apply, since there is not a clearly identifiable stage in the production process, which results in an improvement of the reaction to fire classification.

3.2 Tasks of the manufacturer

The cornerstones of the actions to be undertaken by the manufacturer of the ridgelight in the procedure of assessment and verification of constancy of performance are laid down in Table 2.

3.3 Tasks of the notified body

See R 568/2014.
<table>
<thead>
<tr>
<th>No</th>
<th>Subject/type of control</th>
<th>Test or control method</th>
<th>Criteria, if any</th>
<th>Minimum number of samples</th>
<th>Minimum frequency of control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control plan for the manufacturer; corner stones</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Factory production control (FPC) including testing of samples taken at the factory in accordance with a prescribed test plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Incoming materials</td>
<td>The manufacturer shall document the date of delivery and the date of the manufacturing of the components</td>
<td>≥ 2.2.1 a) -5%</td>
<td>1</td>
<td>Per 3 hours production time</td>
</tr>
<tr>
<td>2</td>
<td>Density of the frame profiles</td>
<td>By measuring the mass of sample and relate to the average Area of cross section multiplied by length of sample</td>
<td>≥ 2.2.1 a) -5%</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Density of the frame profiles</td>
<td>EN ISO 1183-1 (Room temperature)</td>
<td>≥ 2.2.1 a) -5%</td>
<td>1</td>
<td>Per 5<sup>th</sup> batch of side frame profile, and minimum twice a month</td>
</tr>
<tr>
<td>3</td>
<td>Dimensions of the profiles and the hardware</td>
<td>Tested and shall fulfill the requirements of a given profile and hardware list</td>
<td>≥ 2.2.1 b) -5%</td>
<td>2 or 3</td>
<td>Per 5<sup>th</sup> batch of side frame profile, and minimum twice a month</td>
</tr>
<tr>
<td>4</td>
<td>Weight per meter</td>
<td>Tested and shall fulfill the requirements of a given profile and hardware list</td>
<td>≥ 2.2.1 b) -5%</td>
<td>2 or 3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Glass % of the frame profiles</td>
<td>EN ISO 1172</td>
<td>≥ 2.2.1 b) -5%</td>
<td>2 or 3</td>
<td>Per 5<sup>th</sup> batch of side frame profile, and minimum twice a month</td>
</tr>
<tr>
<td>6</td>
<td>Reaction to fire (class A1, A2, B,C, D or E)</td>
<td>EN ISO 1182 or EN ISO 1716 and EN 13823 and EN 11925-2 as relevant</td>
<td>2.2.2</td>
<td>1</td>
<td>once per two years</td>
</tr>
</tbody>
</table>
4 REFERENCE DOCUMENTS

As far as no edition date is given in the list of standards thereafter, the standard in its current version at the time of issuing the European Technical Assessment, is of relevance.

EN 14351-1:2006+A1:2010
Windows and doors -- Product standard, performance characteristics -- Part 1: Windows and external pedestrian doorsets without resistance to fire and/or smoke leakage characteristics

EN ISO 1183-1
Plastics -- Methods for determining the density of non-cellular plastics Part 1: Immersion method, liquid pyknometer method and titration method

EN ISO 1172
Textile-glass-reinforced plastics -- Prepregs, moulding compounds and laminates -- Determination of the textile-glass and mineral-filler content -- Calcination methods

EN ISO 527-5
Plastics - Determination of tensile properties -- Part 5: Test conditions for unidirectional fibre-reinforced plastic composites

EN ISO 14126
Fibre-reinforced plastic composites -- Determination of compressive properties in the in-plane direction

EN ISO 14125
Fibre-reinforced plastic composites -- Determination of flexural properties

EN ISO 14129
Fibre-reinforced plastic composites -- Determination of the in-plane shear stress/shear strain response, including the in-plane shear modulus and strength, by the plus or minus 45 degree tension test method

EN ISO 14130
Fibre-reinforced plastic composites -- Determination of apparent interlaminar shear strength by short-beam method

EN 1990
Eurocode -- Basis of structural design

EN 1991-1-1
Eurocode 1: Actions on structures - Part 1-1: General actions - Densities, self-weight, imposed loads for buildings

EN 1991-1-3
Eurocode 1 - Actions on structures - Part 1-3: General actions - Snow loads

EN 1991-1-4
Eurocode 1: Actions on structures - Part 1-4: General actions - Wind actions

ETAG 010
Guideline for European technical Approval For Self-Supporting Translucent Roof Kits

EN 13501-1
Fire classification of construction products and building elements -- Part 1: Classification using test data from reaction to fire tests

EN 13501-5
Fire classification of construction products and building elements -- Part 5: Classification using data from external fire exposure to roofs tests

©EOTA 2016
ANNEX A DESCRIPTION OF THE CONSTRUCTION PRODUCT

Description of the static system of the kit. The glass panes apart from their self-weight, snow and wind do not carry any additional loads.

Side frame profiles of two roof windows (openable/openable, fixed/fixed or openable/fixed)

Interior lining and external flashing are not part of the static system.

Principle build-up of the kit.

The outer frame dimensions of the roof windows are identical and is symmetric around the longitudinal axis

The marked details shows the external flashings and internal linings. There is no loadbearing beam in top in the longitudinal direction of the kit.
ANNEX B TEST OF HARDWARE AND ITS FIXATION TO THE PROFILES

Arrows are indicating pulling (force) directions.

The pulling (force) directions are based on an analysis of normal load combinations considering also unequal load distributions. Based on this analysis the below test regime constitutes the worst case scenarios.

Test directions:
- C, E, G, H
- D, K
- F, J, L, M

Test methods:
- Hydraulic test bench
- Full-scale test, loading by means of sandbags
- One roof window (1000 mm x 2400 mm) horizontally installed, upside down supported at each corners, loading by means of sandbags