Increase of punching shear resistance of flat slabs or footings and ground slabs – double headed studs – Calculation Methods

TR 060
November 2017
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General</td>
<td>3</td>
</tr>
<tr>
<td>1.1</td>
<td>Scope</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Assumptions</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Specific terms used in this TR</td>
<td>4</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Abbreviations</td>
<td>4</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Indices</td>
<td>4</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Actions and resistances</td>
<td>4</td>
</tr>
<tr>
<td>1.3.4</td>
<td>Concrete, reinforcement and double headed studs</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Punching shear Calculation</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>General rules and basic control perimeter</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Verifications</td>
<td>6</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Actions - design shear stress</td>
<td>6</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Flat slabs</td>
<td>7</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Footings and ground slabs</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Punching shear resistance without shear reinforcement</td>
<td>8</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Flat slabs</td>
<td>8</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Footings and ground slabs</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Punching shear resistance with shear reinforcement</td>
<td>9</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Flat slabs</td>
<td>9</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Footings and ground slabs</td>
<td>9</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Outer control perimeter</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Positioning of the reinforcement elements and the double headed studs</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>Flat slabs</td>
<td>11</td>
</tr>
<tr>
<td>3.2</td>
<td>Footings and ground slabs</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>Reference documents</td>
<td>13</td>
</tr>
<tr>
<td>A</td>
<td>Specification on the reinforcement elements</td>
<td>14</td>
</tr>
<tr>
<td>A.1</td>
<td>Reinforcement elements with double headed studs</td>
<td>14</td>
</tr>
</tbody>
</table>
1 GENERAL

1.1 Scope

This Technical Report contains a method for punching shear calculation of flat slabs or footings and ground slabs under static, quasi-static and fatigue loading.

Reinforcement elements according to Annex A are used for the increase of the punching shear resistance of flat slabs or footings and ground slabs under static, quasi-static and fatigue loading.

The reinforcement elements are located adjacent to columns or high concentrated loads.

This TR covers the following specifications of the intended use:

• flat slabs or footings and ground slabs made of reinforced normal weight concrete of strength class C20/25 to C50/60 according to EN 206-1:2000
• flat slabs or footings and ground slabs with a minimum height of \(h = 180 \) mm
• flat slabs or footings and ground slabs with a maximum effective depth of \(d = 300 \) mm (only for double headed studs with smooth shafts)
• reinforcement elements with double headed studs of the same diameter and type (ripped or smooth) in the punching area around a column or high concentrated load
• reinforcing steel for the studs acc. to EN1992-1-1 may be used with \(f_{yK} \geq 500 \) N/mm\(^2\), in design only \(f_{yK} = 500 \) N/mm\(^2\) is allowed
• reinforcement elements with double headed studs installed in an upright (rail at the bottom of the slab) or hanging position
• reinforcement elements with double headed studs positioned such that the double headed studs are perpendicular to the surface of the slab or footing
• reinforcement elements with double headed studs directed radially towards the column or high concentrated load and distributed evenly in the critical punching area
• reinforcement elements with double headed studs positioned such that the upper heads of the studs reach at least to the outside of the uppermost layer of the flexural reinforcement
• reinforcement elements with double headed studs positioned such that the lower heads of the studs reach at least to the outside of the lowest layer of the flexural reinforcement
• reinforcement elements with double headed studs positioned such that the concrete cover complies with the provisions according to EN 1992-1-1
• reinforcement elements with double headed studs positioned such that the minimum and maximum distances between the double headed studs on an element and between the elements as arranged around a column or area of high concentrated load complies with the provisions according to section 3

• The provisions according to section 3 are kept on site with an accuracy of \(0,1h \) (\(h \) height of the slab)

This document was written to represent current best practice. However, users should verify that applying its provisions allows local regulatory requirements to be satisfied.

The design for static, quasi-static and fatigue loading of the flat slabs or footings and ground slabs shall base on EN 1992-1-1.

1.2 Assumptions

It is assumed that

- The load-bearing capacity of the column below the shear reinforcement as well as the local compressive stress at the joint between slab and column are each verified individually and by taking into account of national provisions and guidelines.
- The load-bearing capacity of the concrete slab outside the punching shear reinforced area is verified separately and in accordance with the relevant national provisions.
- The moment resistance of the entire slab is verified in accordance with the relevant national provisions.
In case of cast in-situ slabs, the punching shear reinforced area is poured monolithically with the slab. In case of slabs made out of prefabricated thin elements and additional cast in-situ concrete one head of the punching shear reinforcement is arranged in the prefabricated slab.

- The flexural reinforcement over the column has to be anchored outside the outer perimeter u_{out}.
- The lower reinforcement of the slab is laid over the column.
- The upper reinforcement of the slab is placed continuously over the loaded area.
- If the precast elements need to be joined in the punching area, the distance between the prefabricated elements shall be ≥ 40 mm wide and shall be carefully filled with cast in-situ concrete thoroughly. The distance between prefabricated elements and the edge of the column is limited to -10 mm (prefabricated element extends over the column edge) and 40 mm (see Hegger 2015).

- The position, the type, the size and the length of the double headed studs are indicated on the design drawings. The material of the double headed studs is given additionally on the drawings.
- The lower reinforcement of the slab is laid over the column.
- The upper reinforcement of the slab is placed continuously over the loaded area.

1.3 Specific terms used in this TR

1.3.1 Abbreviations

1.3.2 Indices

- E: action effects
- R: resistance
- V: shear force
- c: concrete
- d: design value
- f_0: footing or ground slab
- k: characteristic value
- max: maximum
- min: minimum
- pu: punching shear
- re: reinforcement
- s: steel
- sl: flat slab
- y: yield

1.3.3 Actions and resistances

- γ: partial safety factor
- $V_{Rd,\text{max}}$: maximum punching shear resistance along the critical diameter u_1
- V_{min}: minimum punching shear resistance along the critical diameter u_1
- $V_{Rd,c}$: punching shear resistance without shear reinforcement
- V_{Ed}: design value of the applied shear force
- V_{Ed}: shear stress calculated along the area defined by the basic perimeter and the effective depth ($u_1 \cdot d$)
- f_{cd}: design compressive cylinder strength (150 mm diameter by 300 mm cylinder)
- f_{yd}: design steel yield strength
- f_{yk}: characteristic value of yield stress of the stud (≥ 500 MPa)
- σ_{cp}: normal stresses in concrete in critical section
- f_{red}: design value of the yield strength of the double headed studs
1.3.4 Concrete, reinforcement and double headed studs

\[\rho \] reinforcement ratio
\[a \] distance from column face to control perimeter
\[u_0 \] column perimeter
\[\kappa \] coefficient to take into account size effects
\[m_C \] number of elements (rows) in the area C
\[n_C \] number of studs of each element (row) in the area C
\[d_h \] shaft diameter of the double headed stud
\[\gamma \] product dependent partial safety factor for double headed studs
\[= 1.15 \]
\[\eta \] factor to take into account the effective depth
\[A_{\text{sw}; 0.8d} \] cross sectional area of punching reinforcement in a distance between 0.3·\(d \) and 0.8·\(d \) from the column face
\[A_{\text{crit}} \] area within the critical perimeter \(u_{\text{crit}} \) at the iteratively determined distance \(a_{\text{crit}} \) from the column face
\[A \] area of the footing (area within the line of contraflexure for the bending moment in radial direction in a continuous ground slab)
\[s_r \] radial distance between different rows of double headed studs
\[\beta \] coefficient taking into account the effects of load eccentricity
\[\beta_{\text{red}} \] reduced coefficient taking into account the effects of load eccentricity
\[d \] effective depth according to EN 1992-1-1
\[u_1 \] perimeter of the critical section at a distance of 2.0·\(d \) from the column face
\[l_b \] distance between column face and outermost row of stud
2 PUNCHING SHEAR CALCULATION

2.1 General rules and basic control perimeter

The design of punching shear reinforcement typically consists of the following steps:

- Resistance of the slab without punching shear reinforcement at critical perimeter \(u_1 \)
 \[V_{Ed} \leq V_{Rd,c} \] (2.1)

- Maximum resistance of the slabs at critical perimeter \(u_1 \)
 \[V_{Ed} \leq V_{Rd,max} \] (2.2)

- Resistance of the punching shear reinforcement inside zone C:
 \[V_{Ed} \leq V_{Rd,s} \] (2.3)

- Resistance of the slabs at outer perimeter \(u_{out} \)
 \[V_{Ed} \leq V_{Rd,c} \] (2.4)

The verification of the load bearing capacity at ultimate limit state is performed as follows: The ultimate limit state of punching shear shall be assessed along control perimeters. The slab shall be designed to resist a minimum of bending moments according to national guidelines. Outside the control perimeter the verification of the ultimate limit state design for shear and bending shall be carried out according to national guidelines.

For the determination of the punching shear resistance, an inner critical perimeter \(u_1 \) perpendicular to the flat slab surface at the distance 2,0·\(d \) (\(d \) = effective depth of the slab) around the column and an outer control perimeter \(u_{out} \) at a distance of 1,5·\(d \) from the outermost row of the punching shear reinforcement are considered. For footings and ground slabs, the distance to the critical perimeter has to be calculated with an iterative method.

The critical perimeter may be determined as stated above for columns with a perimeter \(u_0 \) less than 12·\(d \) (or according to NA to EN1992-1-1) and a ratio of the longer column side to the shorter column side not larger than 2,0. For columns with an arbitrary shape the perimeter \(u_0 \) is the shortest length around the loaded area. The critical perimeters are affine to the perimeter \(u_0 \).

If these conditions are not fulfilled, the shear forces are concentrated along the corners of the column and the critical perimeter has to be reduced.

2.2 Verifications

2.2.1 Actions - design shear stress

In a first step, the design value of the action effect of shear \(V_{Ed} \) per area \((u\cdot d)\) along the basic control perimeter \(u_1 \) is calculated:

\[
V_{Ed} = \frac{\beta \cdot V_{Ed}}{u_1 \cdot d}
\] (2.5)
For structures where the lateral stability does not depend on frame action between the slabs and the columns, and where the adjacent spans do not differ in length by more than 25%, constant values for β may be used. If not given otherwise in NA to EN1992-1-1, the following values may be used:

- interior columns: $\beta = 1.10$
- edge columns: $\beta = 1.40$
- corner columns: $\beta = 1.50$
- corner of wall: $\beta = 1.20$
- end of wall: $\beta = 1.35$

Alternatively the more detailed calculation according to EN 1992-1-1, section 6.4.3 (3) may be used to determine the factor β. The applicability of the reduced basic control perimeter according to EN 1992-1-1, section 6.4.3 (4) may be limited by NA.

2.2.2 Flat slabs

The load bearing capacity of flat slabs with punching shear reinforcement is verified as follows:

$$
\beta \cdot V_{Ed} \leq V_{Rd,sy} \quad \text{and} \quad \beta \cdot V_{Ed} \leq V_{Rd,max} \cdot u \cdot d
$$

where

- β is defined as in section 2.2.1 of this TR
- $V_{Rd,sy}$ is determined as in section 2.4.1 of this TR
- $V_{Rd,max}$ is determined as in section 2.4.1 of this TR

2.2.3 Footings and ground slabs

The load bearing capacity of footings and ground slabs with punching shear reinforcement is verified as follows:

$$
\beta \cdot V_{Ed,red} \leq V_{Rd,s} \quad \text{and} \quad \beta \cdot V_{Ed,red} \leq V_{Rd,max} \cdot u \cdot d
$$

where

- $V_{Rd,s}$ is determined as in section 2.4.2 of this TR
- $V_{Rd,max}$ is determined as in section 2.4.2 of this TR
- u is the control perimeter determined by iterative calculation as in section 2.3.2 of this TR

in general:

$$
\beta \cdot V_{Ed,red} = \beta \cdot (V_{Ed} - \Delta V_{Ed}) = \beta \cdot (V_{Ed} - \sigma_{gd} \cdot A_{crit})
$$

(with σ_{gd} being the mean value of the soil pressure inside the critical area A_{crit})

for a uniform soil pressure distribution:

$$
\beta \cdot V_{Ed,red} = \beta \cdot V_{Ed} \left(1 - \frac{A_{crit}}{A}\right)
$$

Where:

- A_{crit}: area within the critical perimeter u_{crit} at the iteratively determined distance a_{crit} from the column face
- A: area of the footing (area within the line of contra flexure for the bending moment in radial direction in a continuous flat plate)

If outside of $0.8 \cdot d$ further rows of studs are necessary, the required cross-sectional area of each additional row of shear reinforcement may be determined for 33% of the design value of the shear force, taking into account the reduction by the soil pressure within the shear reinforced area.
2.3 Punching shear resistance without shear reinforcement

2.3.1 Flat slabs

In flat slabs, the resistance of the slab without punching reinforcement is calculated either according to Equation (2.10) or according to NA to EN1992-1-1:

\[V_{Rd,c} = C_{Rd,c} \cdot \kappa \cdot \sqrt{\frac{100 \cdot \rho_i \cdot f_{ck}}{1 + k_1 \cdot \sigma_{cp}}} \geq (V_{min} + k_1 \cdot \sigma_{cp}) \] \hspace{1cm} (2.10)

- \(C_{Rd,c} \): empirical factor, the recommended value is \(C_{Rd,c} = 0.18/\gamma_c \)
- \(\gamma_c \): partial safety factor for concrete (recommended value is \(\gamma_c = 1.5 \))
- \(\kappa \): coefficient to take into account size effects, \(d \) in [mm]
- \(\rho_i \): mean reinforcement ratio of y- and z-directions
- \(f_{ck} \): design value of cylinder compressive strength
- \(f_{yd} \): design value of yield strength of reinforcing steel
- \(k_1 \): empirical factor, the recommended value is 0.1
- \(\sigma_{cp} \): normal stresses in concrete in the critical section

\[V_{min} = \frac{0.0525 \cdot \kappa^{1.5} \cdot f_{ck}^{0.5}}{\gamma_c} \] for \(d \leq 600 \text{ mm} \) \hspace{1cm} (2.13)

\[V_{min} = \frac{0.0375 \cdot \kappa^{1.5} \cdot f_{ck}^{0.5}}{\gamma_c} \] for \(d > 800 \text{ mm} \) \hspace{1cm} (2.14)

(intermediate values are linearly interpolated)

In case of small ratios of the column perimeter to the effective depth \((u_0/d)\), the punching resistance has to be reduced.

\[u_0 / d < 4.0 : \quad C_{Rd,c} = \frac{0.18}{\gamma_c} \cdot \left(0.1 \cdot \frac{u_0}{d} + 0.6 \right) \geq \frac{0.15}{\gamma_c} \] \hspace{1cm} (2.15)

2.3.2 Footings and ground slabs

For footings and ground slabs, the punching shear resistance along the basic perimeter is determined as follows.

The punching shear resistance without shear reinforcement \(V_{Rd,c} \) for footings and ground slabs is defined according to the following Equation (2.16) or according to NA to EN1992-1-1:

\[V_{Rd,c} = C_{Rd,c} \cdot \kappa \cdot \sqrt{\frac{100 \cdot \rho_i \cdot f_{ck}}{a}} \frac{2 \cdot d^2}{a} \] \hspace{1cm} (2.16)

- \(C_{Rd,c} \): 0.15/\(\gamma_c \) for compact footings with \(a/d \leq 2.0 \)
 0.18/\(\gamma_c \) for slender footings and ground slabs
- \(a \): the distance from the column face to the control perimeter considered

The governing distance \(a \) (\(\leq 2 \cdot d \)) leads to the minimum value of \(V_{Rd,c} \) and can be determined iteratively.

©EOTA 2017
2.4 Punching shear resistance with shear reinforcement

2.4.1 Flat slabs

The maximum punching shear resistance along the critical perimeter \(\mu_1 \) is defined as the resistance of the slab without shear reinforcement multiplied with the factor \(k_{pu,sl} \) according to Equation (2.17):

\[
V_{Rd,max} = k_{pu,sl} \cdot V_{Rd,c}
\]

(2.17)

The verification acc. to Equ. (6.53) of EN1992-1-1 is not applicable.

The value \(k_{pu,sl} \) is product dependent and given in the ETA and \(V_{Rd,c} \) in Equation (2.17) is the calculated punching shear resistance according to Equation (2.10) and not according to the NA to EN 1992-1-1, taking into account the relevant partial safety factors for material properties.

The effect of normal compressive stresses shall not be considered for the calculation of the maximum punching shear capacity of the slab if not stated otherwise in the ETA. If inclined pre-stressed tendons reduce the punching shear capacity, the effect shall be included for the dimensioning of the studs with the maximum value of the negative influence. If inclined pre-stressed tendons increase the punching shear capacity, they have to be effective in both areas C and D.

For the purpose of dimensioning of the studs, distinction will be made between the area C (adjacent to the column) and the area D (further away than \(1,125 \cdot d \) from the column face). The double headed studs in the area C shall be dimensioned according to the following equation:

\[
\beta \cdot V_{Ed} \leq V_{Rd,sy} = n_c \cdot m_c \frac{d_s^2 \cdot \pi \cdot f_y}{4 \cdot \gamma_s \cdot \eta}
\]

(2.18)

\(m_c \): number of elements (rows) in the area C

\(n_c \): number of studs of each element (row) in the area C

\(d_s \): shaft diameter of the double headed stud

\(f_y \): characteristic value of yield stress of the stud = 500 MPa

\(\gamma_s \): product dependent safety factor for double headed studs

\(\eta \): factor taking into account the effective depth, intermediate values have to be interpolated:

\[
\eta = \begin{cases}
1,0 \quad \text{for } d \leq 200\text{mm} \\
1,6 \quad \text{for } d \geq 800\text{mm}
\end{cases}
\]

Alternative values for \(\eta \) may be given in the ETA.

In the area D, the dimensioning of the studs is governed by the rules for positioning of the studs as given in clause 3.1.

2.4.2 Footings and ground slabs

The maximum punching shear resistance in the critical perimeter \(\mu_{crit} \) is defined by a multiple value of the resistance of the footing without shear reinforcement:

\[
V_{Rd,max} = k_{pu,fo} \cdot V_{Rd,c} \quad \text{footings and ground slabs}
\]

(2.19)

The verification acc. to Equ. (6.53) of EN1992-1-1 is not applicable.

The value \(k_{pu,fo} \) is product dependent and given in the ETA and \(V_{Rd,c} \) in Equation (2.19) is the calculated punching shear resistance according to Equation (2.16) and not according to the NA to EN 1992-1-1, taking into account the relevant partial safety factors for material properties.

In footings and ground slabs, the amount of double headed studs shall be dimensioned according to the following equation:

\[
V_{Rd,s} = f_{yw} \cdot A_{gw:0.8d}
\]

(2.20)

\(f_{yw} \): design value of the yield strength of the double headed studs

\(A_{gw:0.8d} \): cross sectional area of punching reinforcement in a distance between \(0,3 \cdot d \) and \(0,8 \cdot d \) from the column face
A_{crit} \colon \text{area within the critical perimeter } u_{crit} \text{ at the iteratively determined distance } a_{crit} \text{ from the column face}

A \colon \text{area of the footing (area within the line of contra flexure for the bending moment in radial direction in a continuous ground slab)}

If outside of 0.8 \cdot d further rows of studs are necessary, the required cross-sectional area of each additional row of shear reinforcement may be determined for 33\% of the design value of the applied shear force, taking into account the reduction by the soil pressure within the shear reinforced area.

For the calculation of the punching shear resistance outside the shear reinforced zone, it is allowed to subtract the soil pressure inside the outermost row of shear reinforcement.

2.4.3 Outer control perimeter

In the case, that punching shear reinforcement is necessary, an adequate amount of punching reinforcement elements has to be placed in the slab. The control perimeter \(u_{out} \) at which shear reinforcement is not required shall be calculated with the following expression:

\[
u_{out} = \frac{\beta_{red} \cdot V_{Ed}}{v_{Rd,c} \cdot d}
\]

(2.21)

\(\beta_{red} \) is a reduced factor for taking into account the effects of eccentricity in perimeter \(u_{out} \)

\(v_{Rd,c} \) is the design punching shear resistance without punching shear reinforcement according to Equation (2.10),

with \(C_{Rd.c} \) may be taken from the national guidelines for members not requiring design shear reinforcement, i.e. one-way shear (EN 1992-1-1, 6.2.2(1)), the recommended value is 0.15/\(\gamma_c \)

For the determination of the shear resistance along the outer perimeter (\(u_{out} \)) of edge and corner columns, a reduced factor \(\beta_{red} \) for the verification along the outer perimeter may be used.

Edge columns:

\[
\beta_{red} = \frac{\beta}{1,2 + \frac{\beta}{20} \cdot \frac{l_s}{d}} \geq \beta_{int.col}
\]

(2.22)

Corner columns:

\[
\beta_{red} = \frac{\beta}{1,2 + \frac{\beta}{15} \cdot \frac{l_s}{d}} \geq \beta_{int.col}
\]

(2.23)

Corner of wall; end of wall, interior columns:

\[
\beta_{red} = \frac{\beta}{1,2 + \frac{\beta}{40} \cdot \frac{l_s}{d}} \geq \beta_{int.col}
\]

(2.24)

\(l_s = \text{distance between the face of the column and the outermost stud} \)

\(\beta_{int.col} \) according to NA of EN1992-1-1
3 POSITIONING OF THE REINFORCEMENT ELEMENTS AND THE DOUBLE HEADED STUDS

3.1 Flat slabs

The studs of the first row are placed at a radial distance from the column face between 0,35d and 0,5d. The studs of the second row are placed at a radial distance from the column face of ≤ 1,125d. The radial spacing of the studs is ≤ 0,75d. The tangential spacing of the studs is ≤ 1,7d at a radial distance from the column face of ≤ 1,00d. The tangential spacing of the studs is ≤ 3,5d at a radial distance from the column face of > 1,00d. The area with a radial distance from the face of the column of ≤ 1,125d is called area C. The area with a radial distance from the face of the column of > 1,125d is called area D. If the number of reinforcement elements in the area D is larger compared to the area C, the additional reinforcement elements in the area D are placed radially to the column and at even tangential spacing. For thick slabs where reinforcement elements with three or more headed studs are used in area C, the radial distance is reduced according to the following equation:

\[s_{r,area \ D} = \frac{3 \cdot d \cdot m_D}{2 \cdot n_c \cdot m_C} \leq 0,75 \cdot d \]

(3.1)

with

- \(m_C \): number of elements (rows) in the area C
- \(m_D \): number of elements (rows) in the area D
- \(n_c \): number of studs of each element (row) in area C

For double headed studs placed next to free slab edges and recesses, a transverse reinforcement is provided to control the transverse tensile forces.

![Diagram of stud positioning](image)

Figure 3: Maximum spacing of studs in area C and D of flat slabs (\(s_r \Rightarrow s_t\))

3.2 Footings and ground slabs:

The studs of the first row are placed at a radial distance from the column face of 0,3d. The studs of the second row are placed at a radial distance from the column face of ≤ 0,8d. The radial spacing of the studs is ≤ 0,5d. The tangential spacing of the studs is ≤ 1,5d at a radial distance from the column face of ≤ 0,8d. The tangential spacing of the studs is ≤ 2,0d at a radial distance from the column face of > 0,8d. The double headed studs are evenly distributed along the circular sections.
The area with a radial distance from the face of the column of \(\leq 0.8d \) is called area C. The area with a radial distance from the face of the column of \(> 0.8d \) is called area D. For slender footings with \(a_i/d > 2.0 \) (see Figure A2) the radial distance in the area D is \(\leq 0.75d \).

Figure 2: Maximum spacing of studs in slender and compact footings \((s_w \rightarrow s_i)\)
4 REFERENCE DOCUMENTS
As far as no edition date is given in the list of standards thereafter, the standard in its current version is of relevance.

EN 1990:2015 Eurocode: Basis of structural design
EAD 160003-00-0301 Double headed studs for the increase of punching shear resistance of flat slabs or footings and ground slabs
ANNEX A SPECIFICATION ON THE REINFORCEMENT ELEMENTS

A.1 Reinforcement elements with double headed studs

This TR covers double headed studs with an ETA issued on basis of EAD 160003-00-0301. The double headed studs are connected in one of the following examples:

a) by a rail, studs are tack welded or clamped at one end to a rail made of non-structural steel or reinforcing bars or (see Figure A.1 a))

b) by reinforcing bars welded to the shaft, non-structural ribbed reinforcing bars are spot welded to the shaft (see Figure A.1 b))

c) clamped with plastic locks to a steel or plastic rail (see Figure A.1 c))

Figure A.1: Examples of connections of double headed studs