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Foreword

EOTA Technical Reports are developed as supporting
reference documents to European Technical Approval
Guidelines and can also be applicable to a Common
Understanding of Assessment Procedures, an EOTA
Comprehension Document or an European Technical
Approval, as far as reference is made therein.

EOTA Technical Reports go into detail in some aspects
and express the common understanding of existing
knowledge and experience of the EOTA bodies at a
particular point in time.

Where knowledge and experience is developing,
especially through approval work, such reports can be
amended and supplemented.

When this happens, the effect of the changes upon the
European Technical Approval Guidelines will be laid
down in the relevant comprehension documents,
unless the European Technical Approval Guideline is
revised.

This EOTA Technical Report has been prepared by the
EOTA Working Group 06.03/01 — “Three dimensional
nailing plates” and endorsed by EOTA.
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1 Scope

This Technical Report gives principles for, and
examples of, the static calculation of connections made
with three-dimensional nailing plates, with examples, in
timber structures.

2 Introduction

The technical literature from manufacturers of three-
dimensional nailing plates normally includes tables
which show the product’s load-carrying capacity for a
particular nailing configuration. In calculations it is
necessary to ensure that the proposed nailing
configuration is in accordance with the manufacturer’s
assumptions, and that the static models assumed are
in accordance with the proposed use in the timber
structures.

3 Design principles

The basic principles for the calculation of connections
with three-dimensional nailing plates are illustrated with
some typical examples:

3.1 Beam to beam connection

Since there will normally be a gap between the two
beams in the connection, the reaction force needs to
be transferred by the angle brackets only, see Figure 1.

This method is applicable to thin steel plates since
these result in low stiffness and yielding strength of the
flanges for both torsion and plate bending.

In this way it is ensured, that each flange of the nailing
plate will be subjected to a shear force very close to the
corner.

If the force is positioned elsewhere, the torsional
yielding strength would be exceeded, the nailing plate
would yield resulting in the force ending in the corner.

The two groups of nails can be calculated
independently of each other as eccentric loaded nailing
plates where the ductility of the laterally loaded nails is
utilised.

If the nailing plates are thick and hence have a large
torsional stiffness and load carrying capacity, there will
be a risk of withdrawal of the nails or screws causing a
progressive failure (a zipper like failure).



Figure 1 - Beam to beam connection. Connection with two
angle brackets and nails or screws.
a = plan; b = view on c-c (expanded); ¢ = elevation; A = Cross beam;
B = Beam
This simple static model may be refined by allowing for
the occurrence of torsion in the thin steel plates and
withdrawal forces in the fasteners.

In this case the load-carrying capacity of the fasteners
shall be verified for a combination of actual and lateral
force.

3.2 Purlin with purlin anchors

In this example, shown in Figure 2, an analysis of a
purlin connected to a beam with purlin anchors is
carried out.

The illustration shows how the design of the structure
influences the actions on the nailing plates.

It is assumed that the resulting force from the loading
case “wind suction on the roof” acts in the middle of the
purlin.

The ability of the roof cladding to move the resulting
wind force due to extra tensile force in the nail or screw
and contact pressure between the purlin and the
cladding is disregarded, this assumption is reasonable
for thin corrugated roof sheets with screws in the
middle of the purlin.

As in the former example it is assumed that the force
transfer in the nailing plate corresponds to a shear
force in the corner of the nailing plate.

If the purlin anchors are placed on the same side of the
purlin (Figure 2 upper drawing) equilibrium requires that
the nail group in the beam is able to carry the
eccentricity moment from the force in the middle of the
purlin.

If the purlin anchors are placed diagonally in relation to
the purlin (Figure 2 lower drawing) the eccentricity
moment will be much smaller, however, if the purlin is
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subjected to a torsional moment, it does not normally
present any problems.

If two purlin anchors are used per connection, as
shown on the dotted nailing plate in the section in
Figure 2 it is possible to obtain equilibrium by the
inclined forces in the nails in the beam.

In this way the nail groups are subjected to a central
force without any large withdrawal forces in the nails.

Figure 2 - Anchoring of a purlin by means of purlin anchors and
nails
a = section; A = Purlin; B = Beam; C = Purlin anchors placed on the
same side; D = Purlin anchors placed diagonally; E = Suction, purlin
anchors placed on the same side; F = Suction, purlin anchors placed
diagonally

3.3 Purlin with angle brackets

In this example a purlin is analysed for a lifting force
and connected to an underlying beam with angle
brackets.

The photo in Figure 3 illustrates the static behaviour of
the angle brackets and the nails which are subjected to
withdrawal forces.



Figure 3 - Failure in a connection with an angle bracket and
annular ringed nails subjected to a lifting force.
Only the inner nails, which are pulled out successively, are active.
A = Force transfer

Only the inner nails are active; the outer nails are not
subjected to a withdrawal force, as a yielding hinge is
formed in the thin flange of the bracket.

(Stiffer and stronger angle brackets exist where nails
are simultaneously active for withdrawal.)

A single bracket subjected to a lifting force as shown in
Figure 4 transfers the forces by axial tension in the
nails near the vertical flange and by contact
compression near the free edge of the horizontal
flange.

The necessary expressions for the determination of the
withdrawal force are given in Figure 4.

The eccentricity e is given as the distance from the
action line of the force, and a. is a small length.
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Figure 4 - Angle bracket subjected to a lifting force.
The withdrawal force can easily be found from the expressions when
the small length a. is estimated. Symbols are defined in Eurocode 5.
B = Width of bracket
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If one angle bracket is considered, withdrawal forces in
the nails in the horizontal flange are calculated using
e4, which corresponds to half the width of the purlin
(unless it can be demonstrated that the roof covering
affects the line of action of force F).

In the vertical flange the nails shall be able to transfer
the moment F., together with the lateral load F.

Where the nails are placed in a row, an assessment
has to be made of the extent the nails act together in
transferring axial forces.

In this case the distances between the nails, the
stiffness of the bracket as well as the axial stiffness of
the nails and possibly the forming of a yielding hinge
have to be considered.

For the connection shown in Figure 3 tests show that it
is not possible to take account of more than two closely
spaced rows of annular ringed nails acting together to
transfer the axial withdrawal force.

In Figure 5 two connections with angle brackets are
shown, where it is possible to find an estimate of the
active forces, which is close to reality.

In both cases the vertical force is distributed evenly
over the nails in the vertical flange.

If two angle brackets are considered (or diagonally
positioned, see clause 3.2) the calculation of
withdrawal forces in the nails in the horizontal flange
may be undertaken with e = 0.

The shifting of position of the force F gives a moment
in the vertical flange as indicated in the diagrams over
the forces and the internal moments - but in practice
this can be disregarded.
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Figure 5 - Connection with double and single angle brackets.
Internal forces and moments in the bracket.



3.4 Transfer of forces by contact compression
stresses

When a force is transferred by contact stresses
between the nailing plate and the timber member,
bending will always occur in the nailing plate.

Plate bending can best be modelled by the theory of
plasticity, which is covered in clause 4.

A good (and safe) estimation of the load carrying
capacity can be obtained by assuming that the contact
stress is equal to the compression strength of the wood
perpendicular to the grain f,g and that it is placed
within the given geometry resulting in the largest load-
carrying capacity.

The compression strength f; g, for the relatively small
contact area can be increased as described in the
revision to EC5.

For the joist hanger with sharp edge timber in Figure 6
the loaded width a can be found from moment
equilibrium, since the yielding plate moment of the
nailing plate is known to be m, (per length unit).

Figure 6 - Contact compression stress at the bottom of a joist
hanger.
A = Sharp edge timber; B = Timber with wane

f ona
2m - C,90
y 2
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a=2

where equilibrium in the direction of the shear force
results in

V =2ab chygo =4b m, chygo

It is assumed that the yielding moment is the same at the
bottom and the sides of the joist hanger, and that they have
the same width b.

Where this is not the case, e.g. where different plate
thicknesses are used in a welded joist hanger, it is
simple to take this into account.

If the timber does not have sharp edges at the support,
this will result in another (less favourable) load
distribution, see the lower drawing in Figure 6.

4 Plastic design principles

This section deals with plane connections with
fasteners for which the force-deformation relation can
be assumed to be perfect plastic ie with a horizontal
force deformation relationship.

Only statically determinate connections are treated, but
extending the philosophy to statically indeterminate
connections is not difficult.

For simplicity only two dimensional nailing plates are
considered although these are outside the scope of the
ETAG but three dimensional solutions may frequently
be modelled by two dimensional considerations.

It is assumed that the force-deformation relation of the
fasteners is rigid-plastic, but the expressions are also
applicable to elastic perfectly plastic fasteners, when it
can be demonstrated, that all fasteners considered are
on the perfectly plastic (ie the horizontal) part of the
force-deformation relation.

For a connection with plastic fasteners one can
calculate an upper bound and a lower bound for the
exact plastic load carrying capacity.

Frequently it is harder to determine the latter, and since
it is relatively easy to find an upper bound, which is



close to the exact plastic capacity, one can frequently
be satisfied with an upper bound.

4.1 Determination of an upper bound

An upper bound of the load carrying capacity of a
connection can be determined in the following way:

* arigid body deformation is assumed;

* itis assumed that the force in a fastener is equal to
the yield force and that the direction of the force is
equal to the direction of the relative deformation;

e an upper bound of the plastic load carrying capacity
is calculated by putting the internal work W, of the
fasteners equal to the external work W, of the
external force. (The principle of Virtual Work).

Frequently it is convenient to describe the rigid body
motion as a rotation about an estimated rotation centre.

As a guide for the estimation the exact centre of
rotation is often situated close to a line perpendicular to
the external force R through the elastic centre of gravity
of the connection, see Figure 7.

The centre of rotation often lies opposite the force R in
relation to the centre of gravity; the bigger the
eccentricity the closer to the centre of gravity.

The virtual rotation is denoted 6. With the symbols in
Figure 7 the internal work and the external work can be
found from:

n
Winner = 21 oriFy
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Wex =6eR
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Figure 7 - Determination of upper bound (a) and lower bound
(b).
The yield force of a fastener is denoted Fy.
A = estimated centre of rotation; B = Centre of gravity.
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The upper bound denoted as R* can be calculated from

n
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Equation (1) can be perceived as a moment equilibrium
equation about the estimated centre of rotation.

The following examples show, that R* will only be
slightly larger than the exact value provided a
reasonable centre of rotation is employed.

It is assumed for the plastic calculation, that all
fasteners contribute together with their full yielding
force.

This requires that the slip at the fasteners close to the
centre of rotation is so large, that the yielding force has
been reached.

The fasteners far away from the centre of rotation can
be subjected to large slips, which finally can be so large
that failure will occur.

Where splitting will not occur, based from experience in
tests, one can normally assume that

Utailure = 4Uy
where:
Usaiwre = the slip (relative displacement) at failure;
uy = the slip at the beginning of yielding.

Therefore, it will normally be a conservative estimate to
disregard the fasteners, which have

r<0,25 rmax
where r = distance to the centre of rotation;
Fax = the maximum distance for a fastener from
the centre of rotation (see Figure 7).

The reduction of the load carrying capacity of the
connection will normally be insignificant, and in
practical calculation this is often disregarded.



4.2 Determination of a lower bound

A lower bound of the load carrying capacity of a group
of plastic fasteners can be determined by estimating a
force distribution over the fasteners in a way that the
equations of equilibrium are fulfilled (i.e. a static
allowable force distribution), and that the force in every
single fastener is less than or equal to the yield force
(i.e. a secure force distribution).

421 Example of the determination of a lower
bound

As an example the lower bound of the connection
shown in Figure 7b is determined.

It is assumed that some of the fasteners give
equilibrium in the direction of the force, (fasteners 2-5)
and that the others give moment equilibrium, (fasteners
1 and 6).

The easiest way to set up the moment equilibrium is by
taking moment about the resultant of the fasteners
providing force equilibrium, (fasteners 2 - 5).

The distance between this resultant and R is denoted
as e in the figure.

A lower bound, R, of the load carrying capacity of the
connection is given by:

_ r
R™ =min{4F,,—F
755

It should be noted that with the estimated force
distribution shown in Figure 7b  equilibrium
perpendicular to the outer force is fulfilled
automatically, since all forces are assumed parallel to
this.

4.3 Plastic calculation examples
4.3.1 Example 1

This example concerns the plastic load carrying
capacity of a fish plate connection in a truss cord
shown in Figure 8 where the 14 nails connect the end
of the fish plate to the cord.

It is assumed that N = 2V.
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Figure 8 - Nail connection subjected to an eccentric force.
All dimensions in mm.
A = Boundary of fictitious continuous layer; B = Centre of gravity

The elastic load carrying capacity from proportional
calculation has been determined as

V =0,58/0,565 - 2,0 = 2,05 kN
where:
0,58 = design load-carrying capacity of the nail;
0,565 = calculated design force (see Figure 8).

Equation (1) is applied to calculate an upper bound of
the load carrying capacity of the perfectly plastic
connection. It is assumed that the centre of rotation is
situated in nail number 1.

2r;=2(50 +100) + 150 + 200 + 50 + 2 (71 + 112) +
+ 158 + 206 = 1430 mm

By measuring or calculation, e = 112 mm, and equation
(1) results in

R+ _ 0.581430

=7,41kN
112

which is equivalent to

vt =7.41/45 =3,31kN

If the centre of rotation is assumed to be at nail number
2, one finds V' = 2,86 kN, which is close to the exact



load carrying capacity of 2,81 kN, determined from an
iterative calculation.

A lower bound of the load carrying capacity of the
perfectly plastic connection can be determined by
assuming, that the forces in the middle 10 nails are
parallel to R, and that the forces in the outer 4 nails are
perpendicular to the radius from the centre of gravity.

With this force distribution equilibrium perpendicular to
R is fulfilled; it is statically allowable.

Requiring that the forces in the nails shall be less than
or equal to the yielding force one gets:

R™ =V~ /5 <250,58 V™ <2,59kN

M~ =V [125<40153([0,58 V™ <2,84kN

So, the load carrying capacity of the perfectly plastic
connection is limited by

J5 2,59 < Ry < /5 2,86 kN

43.2 Example 2

Figure 9 shows a fish-plate subjected to a shear force
with a direction as shown.

A force distribution is assumed, where the force in all
nails is parallel to the line connecting the centres of
gravity and with a magnitude equal to the yield force.

Equilibrium perpendicular to V is ensured by the
contact force F; between the ends of the beams.

Friction is disregarded.

V™ =200,73 [tosa =11,7 kN

Since the estimated force distribution can be achieved
by a set of translations and rotations of the members
connected, forming a geometric possible deformation
field, this force is also an upper bound, i.e. it is an exact
plastic solution.

If the shear force changes direction, the system will
change, because equilibrium can no longer be
achieved by the contact pressure.

The nail groups will be subjected to an eccentric load
V.

The plastic load carrying capacity V, has been
calculated as 10,6 kN.
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Figure 9 - Connection with a fish-plate on each side.

Ten nails 31/80 per group with a design load carrying capacity of
1,25 - 0,58 = 0,73 kN per nail, per shear plane (Factor 1,25 for steel
to wood).

B = Centre of gravity

4.3.3 Example 3

This example deals with a gusset plate connection. It is
assumed that there is a good fit between the timber
members, i.e. the joint is small with nails as fasteners
distributed evenly and with the same number n in each
group.

The rotation will press the top chord and the bottom
chord together, so a contact force will emerge in the
joint.

Figure 10 shows the forces and deformations after
yielding in the nails has developed.

Fricton in the joint is disregarded, and it is
approximated that each nail group is loaded centrally
with a force F.

Further, it is assumed that the component of R
perpendicular to the joint results in a contact force.

By projection it can be found, that F can be expressed
by Rpar, Which is the component of R parallel to the
joint.

F= Rpar/cos(a +B)

where the angle B has been determined from frame
analyses and it can approximately be determined from

tan =0,2/(0,7 h - 0,3 [Eot )
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Figure 10 - Gusset plate connection between top chord and
bottom chord.
There is a good fit, so a contact force emerges in the deformed
shape shown with dotted lines, the forces acting on the top chord are
shown with arrows. The thickness of the gusset plate is b.

The strength of the gusset plates should be verified for
a tensile force F; or a shear force F,.

R f

par v

F. =P <A f for tana < -
t~ cosa gusset 't ft
A
_ gusset for fy

Fy = Rpar g fy tana >_t
where:

Agusset = Cross sectional area b h.

By verification of the shear strength a failure plane
parallel to the joint should be used.

This description of calculation methods for plastic plane
connections can be utilised for the static analysis of
three dimensional nail plate connections where the
internal forces are transferred in the plane of the thin
plates of the brackets.

The beam to beam connection shown in Figure 1 is a
typical example.
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